Data reduction and restoration of spectropolarimetric microlensed hyperspectral imager data

نویسندگان

چکیده

Context . A microlensed hyperspectral imager (MiHI) is an integral field spectrograph based on a double-sided microlens array. Aims To convert the raw data frames of such instrument to cubes, and restore them high-resolution science-ready Stokes data, new kind reduction procedure required. Methods An optimized ad hoc transfer map MiHI prototype was used into form. The modified match position image detector, which found drift considerably during course observing day. determination this move recorded flat-field images observation, be critical step in accurate gain correction cubes. converted were suitable for restoration but still contained unwanted polarimetric structure that needed removed. Results extracted restored similar spatial resolution as equivalent from context imager, while retaining spectral approximately 300 000. noise properties determined by photon statistics consistent with estimated transparency integration time sensor. As all image-restored dependent instrumental atmospheric point spread function. attempt compare other suggested had information content comparable Hinode spectro-polarimetric scan, higher temporal cadence 10s.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Freeware solutions for spectropolarimetric data reduction

Most of the solar physicists use very expensive software for data reduction and visualization. We present hereafter a reliable freeware solution based on the Python language. This is made possible by the association of the latter with a small set of additional libraries developed in the scientific community. It provides then a very powerful and economical alternative to other interactive data l...

متن کامل

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

Hyperspectral Data Dimensionality Reduction Using Hybrid Approach

Hyperspectral data contain a large volume of information. This abundance of data is hard to exploit due to high computational cost involved in processing this data. Dimensionality reduction deals with transforming high dimensional data in to lower dimensional space without losing significance of the High dimensional data. In this paper, a new methodology has been proposed that is based on exist...

متن کامل

Incremental Dimensionality Reduction in Hyperspectral Data

Conventionally, pattern recognition problems involve both samples and features that get collected over time or that gets generated from distributed sources. The system starts to falter when the number of features reaches a certain threshold and exhibits the curse of dimensionality. Traditionally dimensionality reduction (DR) is performed to prevent the curse of dimensionality when all features ...

متن کامل

Restoration of Hyperspectral Astronomical Data with Spectrally Varying Blur

In this paper we present a method for hyper-spectral image restoration for integral field spectrographs (IFS) data. We specifically address two topics: (i) the design of a fast approximation of spectrally varying operators and (ii) the comparison between two kind of regularization functions: quadratic and spatial sparsity functions. We illustrate this method with simulations coming from the Mul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Astronomy and Astrophysics

سال: 2022

ISSN: ['0004-6361', '1432-0746']

DOI: https://doi.org/10.1051/0004-6361/202243466